Introduction
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At the time of writing, | have just finished my notes for AP Calculus. | had made it my goal to compile a
set of digital notes for Calculus and Physics C during my summer before university, for my own revision
and for future AP students. | had debated which subject | should start writing notes for first, but |
ultimately settled on Calculus first, as the first time | had to learn calculus for use in Physics C was a big
mess and a rushed affair.

But now, with an entire year's worth of knowledge in calculus, | am about to embark on a journey to
revisit Physics C, this time with all the tools | need to study it again.

Physics C was taught, at my school, within a single year, with Mechanics taking up the time before
Christmas, and Electricity & Magnetism afterwards. These notes will follow the chronology as Mr
Donatelli had taught the course in 2018-19, using most of his notes as the foundation of my notes. | will
attempt to explain concepts in the form of equations, using as little words as possible.

Please bear with me as | revisit the most difficult AP course taught at my school, the infamous AP
Physics C, and its iconic high dropout rates.

Boris Li
23 July, 2020



1 Kinematics
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Kinematics. Always the first item on every physics course's material. This unit almost always
covers all material before mass and energy is introduced, and such that, this unit is limited to
position, velocity, and acceleration.

1.1 The Basics

The relationship between position, velocity, and acceleration is simple. Velocity is the change in
position over time, while acceleration is the change in velocity over time. Put simply:

Ax  dx ,
W= == ®
(t)_Av_dv_ ,(t)_dzx_ "
e Y T

1.2 One-Dimensional
If we start from the acceleration equation, assuming constant acceleration:

Av
a=—

t
at =v — vy
v=vy+at

We reach the first provided equation on the formula sheet.

And if we develop the above equation further:

v=vy+at
dx + at
— =7 a
dt — °

x t
fdx = f(vo + at)dt
X0 0

1 2
x—x0=v0t+zat

1 2
x=x0+v0t+5at

We reach the second equation on the formula sheet, formally uniting the concepts of position,
velocity, and acceleration, all in respect to time.

Now, to eliminate the variable of time:
vV=vy+at
. v =,

a
Inserting this expression into the second equation:

1
x=x0+v0t+§at

v—rvo\ 1 (v—v¢
v =+ (e ()
vov—v§+v2—2v0v+v§
2a
2a(x — xq) = 2vqv — 2V2 + v? — 2vyv + V3
2a(x — xp) = v? — v}
v? = v + 2a(x — xp)

X —Xg =



We reach the third equation that describe motion, without a time variable. This is often
expressed as:
v? = vi + 2alx

These three equations describe one-dimensional motion, assuming constant acceleration. For
higher order motion involving jerk and jounce, please derive your own equations.

1.3 Two-dimensional

When looking at two dimensional problems, split everything into two components.

A marble travels horizontally and drops off a cliff. The cliff is h, tall and the marble lands d
away. Find the velocity as the marble leaves the top of the cliff, v,.

Considering the horizontal components:

1 2
x=x0+v0t+5at

— oS

dl = Uot
=
Considering the vertical components: hy
1
y = Yo + Vot +Eat2
1
hy = = gt?
175 9

Substituting in the first expression, we get:
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7 2h,
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When faced with a problem regarding angles, remember that sine is usually the y component,
and cosine is usually the x component.

A downwards sloping ramp is constructed from the top of the cliff and hits the ground at an
angle 6. A marble is dropped from the same cliff at a velocity of vy. Determine the distance
between the top of the cliff and where the marble first hits the ramp again.

If we flip the graph counterclockwise such that the ramp is horizontal, then the motion of the
marble is simply projectile motion, but with gravity acting downwards and rightwards.
Considering the vertical components:

L
Ay = vyt + s a,t

2 1 U0>
0=v,sinft+ 5(—g cos 9)t?
: 1 2
vy sinft = zgcoset
_ 2vysin@
~ gcos@
Considering the horizontal components: 0

1
Ax = v, gt +Eaxt



1
Ax = vycosOt + > (—gsin 6)t?
Substituting for t:

2vysin 6 1 . 2v, sin 6 2
Ax =vycos| —— ) —=gsinf | ———
gcosf 2 gcos@

Ax = 2v2sin @ — 2v? ﬂ
0 0g cos2 6
Ax = 2vZ sin 6 (1 — tan? )



2 Laws of Motion
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2.1 Newton's Three Laws
First Law
An object stays in constant velocity or remains at rest, unless a force is acted on it.
Second Law
F=ma
Third Law
When an object exerts a force on another object, the second object exerts an equal and
opposite force on the first object.

FA = _ﬁB
2.2 Friction
|1“:F| :#|1“:N|

An object with mass m is moving down the slope. The slope hits the ground at an angle 0, and the
coefficient of friction between the slope and the object is u. Find the acceleration of the object.
Treating the slope as the horizontal, such that the object is moving in the +x direction.

Considering horizontal components: Fr
ma = F;sinf — Fg
ma = mgsin0 — uFy F,

ma = mg sin 6 — umg cos 0
a=g(sinf — ucosB)

The object is now stationary on the slope a further distance down. A force F, is applied to

perpendicular to the slope to keep it stationary. Find the magnitude of Fy.

Treating the slope as the horizontal, such that the object is moving in the +x direction.

Considering horizontal components:
0 =F;sinf — Fg

Fgsin6 = Fy Fy
mgsin@ = uFy
mgsin@ = pu(mg cos 6 + F,) F
™9 i 0 0+ F i
— = mg cos

p sin g N F,
m
Tgsine—mgc059=FA 0

sin 6
Fy =mg —cosf
U
2.3 Atwood's Machines
This is assuming the pulleys are massless.
mya =myg — Fr
Fr=mig —mya
mpa = Fr —myg
Fr =myg + mya
m;

m;g —mpa = myg + mya
gmy —my) = a(my; + my)

 glmy—my) [m,]



m;g —mpa = myg + mya E—

g(my —my) = a(my +my)
_ g(ml - mz) my
B m; +m,

2.4 Drag

Drag depends on both fluid & object properties, and is dependent on the velocity of the object.
As the speed of an object increases, drag increases. And considering a falling object, if the force of
gravity cancels out the force of drag, the object reaches terminal velocity.

2.4.1 Spheres
Fp = —av — pv?
At slow speeds, —av dominates.
At high speeds, —v? dominates.
In general, Fp = —kv™
k depends on density of fluid and shape of object.

2.4.2 Falling Objects

Assuming the falling object is dependent on v.

Fret = ma
Fo—Fp =ma
_ dv
g T Ar =My Aside:
m
dt:m —avdv f a dx
t gv b+ cx
fdt= m dv u=>b+cx
o o My av du = cdx
t=—(ln|mg—av|)| :fidu
cu
—Ezlnlmg—a’vl—lnlmgl a d_u
at mg — av “c) u
_EZIH mg a
mg — av _at =—Inlu|+C
m =e m 8
9 at =Zln|b+cx|
mg —av = mge m
at

av =mg —mge m

m at
V= 791(— e m



3 Work, Energy, & Power
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3.1 Work & Energy

Work can be described as the energy transferred when a force is applied over a distance.
W = AE = fﬁ - dX
3.1.0 Kinetic Energy

The derivation of the kinetic energy formula requires a form of Newton's Second Law that includes
momentum, which we will discuss in the next unit.

3.1.1 Potential Function
Calculating the potential energy of an object on Earth's surface.

W=fﬁ-d;2
Yy
WG:fFG.dy

i
Since gravity reduces the distance between the object an Earth, and we are assuming that the positive y
direction is away from the surface of the earth, gravity is negative.

Yr
Wg = f (-mg) - dy
Vi
Wg = —mgAy
By definition,
AUG = Uf - Ui
AUg = mgyr —mgy;
AUg = mgAy
Then we can conclude:
oo WG = —AUG

As we set U; to be 0, removing the reference point:

Uf—Uiz—fﬁ-df

U(x)EUf:—fﬁ-df

3.1.2 Newton's Law of Universal Gravitation
For any two objects, the force of gravitation should be:
Gmym,
Fol =—5—
Then the work done by the force of gravitation should be:



xf

WG = f FG ~dx
Xi
Xf
Gmim,
AUG = — f - T‘Z -dr
Xi
X
1 f
AUG = Gmlmz _;
r=Xi

1 1
AUG = Gmlmz x__;
L

The literal meaning of the gravitational potential energy of an object becomes the work required to
bring the object from infinitely far away to a certain distance of another object.
By applying the definition of the potential function here

T

Gmm
UG:—f— L Z‘dr

r2
@ T
U- =G 1
¢ = tmim; -
Gmim
UG=_#
r

3.1.3 Hooke's Law
With this information on the potential function, we can cross-check the potential stored in a spring as

according to Hooke's Law:
Us = 1k 2
ds ? )
U
— = kx

dx
dUs _

FSZ_E__kx

3.2 Power

Very simple. Power is defined as the amount of energy transferred over time. In other words,
p dE
S odt
As we know that the change is energy is just work done, we can substitute:
d(F - x)
dt
And assuming force is constant over time,

p_F dx
T odt

P=F-v

p=



4 Momentum & Centre of Mass
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4.1 Momentum
Normally | would like to put momentum together with the previous unit, but since this is how
Mr Donatelli bundled it, | am going to follow that.

Momentum is formally defined as the product of mass and velocity.

p=mv
A change in momentum is called impulse.
J=2p

4.1.1 Newton's Second Law
Newton's Second Law is often presented as:
F=ma
But that was not how Newton had stated it. Instead, Newton had described the following, a
relationship between force and momentum:

. dp
Fodp
dt
With a little bit of manipulation, we can alter it to become our well-known formula:
. d(mv)
Cdt
Assuming mass is constant over time:
= m—
. dt
F =ma

Then, applying the formula for impulse, we can derive:
. dp
F=2L
dt
dp =F -dt

fdﬁzfﬁ-dt
Aﬁ:fﬁ-dt

f:fﬁ-dt

4.1.2 Conservation of Momentum
Newton's Second Law also implies that:

. dp
0=F=—
dt
If there is no external force, there will be no change in momentum. We call this conservation of

momentum.

4.1.3 Kinetic Energy

N

K :fﬁ -dx Aside:



“+.1.0 NITIELIL Cliel gy

K = f F-dx Aside:
. dx
dp V=t
kK= |z vdt dx = vdt
K =f17-dﬁ Integrating by parts:
o fﬁ - d(m¥)
K :fv - d(mv)
u=v
K:mvz—fmﬁ-dﬁ vemy
fudv=uv—fvdu
Assuming mass is constant:
K = 2 _ 1 2 N N N N
= mv m 217 fy.d(mv):mvz—fmv-dv
1
K = >mv?
va

4.2 Centre of Mass

Normally | would put this with the next unit, since all the centre of mass calculations are about
calculating the moment of inertia of objects. But again, Mr Donatelli had separated this out
along with momentum, so | guess | will follow his format.

4.2.1 System of points
The centre of mass of a scattered set of points is the sum of the every product of position and

mass, divided by the total mass.
Yx;m; 1

=21 (xymq + xomy + xgmg + -+ x,My,)
Meotal Mtotal

Calculate every coordinate separately:

me

Yom = 2yim;
cm T

Meotal

;o = 2Zimy
cm T

Meotal

4.2.2 Solids: Uniform Density

Use the same method as system of points.

Use the geometric centre of each uniform density object as the coordinate.
The mass densities are uniform, and are therefore constants.

Q ~
I [

<I3 >3 =3
|

i~
I

4.2.3 Solids: Non-uniform density

Since masses here are continuous, we can alter the system of points formula a little bit:
[ xdm

Xcem
Meotal



To integrate, we have to find the relationship between mass and spatial coordinates.
We express them as mass densities.

1= dm
~dL
_dm
7=
_dm
P=av
A rod has a mass density described by A = f(x). Find its centre of mass.
L
Xem = xdm Aside:
Mtotal dm
x=0 _
1 L dx
Xem = f xf(x)dx dm = Adx
Meotal dm = f(x)dx



5 Circular & Rotational Motion
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5.1 Circular Motion
5.1.1 Definitions

If we travel along the circumference of a circle:

s=rb
Then we can obtain:
ds d(re)
dt ~ dt We define:
_ do dg
VT =T TS
Vr =T1w
And further: And define:
dv d
avr _ 4o _do _d%6
ac ~at T
ar =ra

5.1.2 Rotational Kinematics
Assuming constant angular acceleration, we can apply the rotational version of the kinematic equations.
w=wy+at

1
6= 90 +(J)0t+zat2

w? = wi + 2a00

5.1.3 Centripetal acceleration

We can set the centre of the circle as the origin.

We have a position vector. In cartesian coordinates:
S=rcosfi+7rsindj

Since @ is a function of time, we can say:

. ds ) Qd - %0
v=—=-rsing—i+rcosd—j
V=—rwsinfi+rwcosfj

And further:
_db 40 do
a=—r=-rwcosd—i—rwsind—j
a=-w?(rcos@i+rsinbj)
a=—-w?s

We now know that acceleration points in the other direction of the position vector, towards the centre.
We can now express the magnitude of centripetal acceleration as:

ac = w?r
(1;)
ac = |-
c \r
2
ac =—
cTr

5.2 Rotational Kinetic Energy

From the equation for kinetic energy:

1
K =>mv?
va

Since a rotating object has continuous mass, travelling at different speeds based on their position
relative to the spinning axis:

L
And we define moment of inertia, I = ). mirl-zz



1
K =Elw2

5.3 Moment of Inertia

Mass can be described as the magnitude of ability to resist change in translational motion.

Moment of inertia, on the other hand, describes the magnitude of ability to resist change in rotational
motion.

5.3.1 Example Calculations
A massless rod with length r has two weights attached to its two ends, each weighing m. Find the
moments of inertia around the centre and its ends.

— 2
Leentre = z miri leng = Z miri2

I =m (f)-p m (f) Ieng =mr®>+0

centre 2 2 Iend — mT'Z
mr?

Leentre = 2

A rod has length L and mass M evenly distributed throughout. Find the moments of inertia around the
centre and its ends.
Around the centre:

leentre = f‘rzdm Aside:
M
L, = df
Leentre = f Ar?dr A= d_7:
_L/Z
z

r3
Leentre = 4 ?

M (L3 L3
Icentre=§ 5_ _§

MIL?
Leentre = ?
At the ends:
Iong = frzdm

L
long = fﬂrzdr
0

M L3
lena ZI?

MI?
Iend— 3

A hollow cylinder has a radius of R and a mass of M, all gathered at the curved surface, distributed
evenly. Find the moment of inertia as the cylinder spins arounds the centre of the open ends.

1= f r?dm
I =R? f dm
1 = MR?
A cylinder with mass M evenly distributed is hollowed out at the centre. The hollowed part has a radius

of R4, and the overall radius is R,. Find the moment of inertia as the cylinder spins around the centre of
the open ends.



I = frzdm
Aside:

Ry _ ﬂ
1= f r? (2nrhp - dr) P c‘l/m
Ry R, p= de
1=27rhpfr3dr P=
Ry
M (|
I = 2ﬂh7<z>
ThM "
- 2(nR%h — an h) (RZ — RD)
M (Rz RD)
T2 RZ- R%)
LM (RS~ RO +RD)
2 (R2 - Rlz)
I= %(R2 + R?)

A solid cylinder has mass M and radius R. Find the moment of inertia as it rotates around its centre,
along its height.

szrzdm

R

I = frz (2nrhp - dr)

0
R

1= 27rhpfr3dr

0 R
1= 2 M (T
B
0
1M
= 2™ TR
MR?
2

R4—

I =

5.3.2 Parallel Axis Theorem

A simpler way to find moments of inertia even when the object is not rotating around its centre of mass.
For a second, let us imagine the equation in cartesian coordinates:

szrzdm

Leentre = J(xz +y2)dm

Pythagorean theorem:
r2=x%+y?

Imagine the new axis of rotation is x and y from the centre:

I = f((c +x)2+ (y+y)tm

1= fxz dm+f2xx’dm+Jx’2dm+fy2 dm+nyy’dm+fy’2dm
Since the distances are constants:
1:xzfdm+2xfx’dm+fx’2dm+yzfdm+2yjy’dm+fy’2dm
And reorganizing the terms:
fdm+y fdm + J:r(2+y’%1)n + 2xfx’dm+2yfy’dm

I =DM + I optre + 0



wl=lIgy + DM

5.4 Torque
Torque is defined as the cross product of radius and force.
Cross product means perpendicular.

T=7xF
Because the centripetal force acts on the same direction as the radius, it does not produce torque.
However, when a tangential force is applied:

YXFr =mar

XFrr = marr

Xt = m@ra)r

T = mria

Yr=la
Similarly, for continuous objects:

dFT = aTdm

rdFy = rardm

dr = r?adm

fdrzafrzdm

Tnet =l

5.4.1 Atwood's Machines

Same thing, but when the pulleys have mass, you have to take into account their moments of inertia.
ma=myg—T,
T, =mig —mqa

mya =T, —myg M
T, =myg + mya R
Tnet = I
R(T T)_MRZ a
1 2) =75 'p
Ma

mlg—mla—ng—mza—TZO

Ma |m1|
m1a+m2a+7=m1g—m2g

_ Mg —myg

m1+m2+%

5.4.1 Rolling and Slipping

When a ball is rolling, translational motion is equal to its rotational counterpart:

x =10
V=Tw
a=ra

When a ball is slipping, it can fall into two categories:
1. The ball is spinning, but it is not moving (as much)
x <rf
v<TW
2. The ball is moving, but not spinning (as much)
x>rf
vV>Tw

A ball with mass M and radius R has an initial speed of vy and no rotational velocity. If the coefficient of
friction is u, find the time needed for the ball to go from sliding to rolling.
Considering translational motion:

Considering rotational motion:
Frpet = ma

Tnet =l
—Fp = Ma net )

— =_ 2
—uMg = Ma RFp 5MR a
a=-ug 2

uMg =§MRO:
U:U0+at _Sy_g
V=0 — pugt =R



uHvry — gmnu

v =1+ at Sug
v =1, - ugt = 2R
When rolling: w=wy+at
V=T 5ug .
Sug T
—ugt =R—=t¢t
Vo — UG 2R
=pugt|1+ >
Vo = UG 2
_ 2y
ng

5.5 Angular Momentum
Angular momentum is defined as:
L=%xp
It is simply the rotational equivalent of momentum.
And since:
L= Zrimivi
L =Zrm;(rw)

L=d®mﬁ

L=1Iw
And also:
T=7xF
. . dp
T—T'XE
. _d@xp)
T=—"—
_dt
Q_dL
LT

From the equation above, we know that, like linear momentum, angular momentum is conserved.

A rod with mass mg and length r is fixed at one end, like a pendulum. The rod is initially at rest, and a
ball with mass mg, travelling at v, then collides with the non-fixed end of the rod at a right angle. The
ball sticks to the end of the rod after the collision. Find the speed of the ball after the collision.

Linear momentum is not conserved here, since after the collision, the axis of rotation applies a force on

the rod.

On the other hand, angular momentum is conserved here, since the force that the axis of rotation
applies on the rod acts at a distance of zero, and therefore does not contribute to torque.

. dL
.
Li:Lf

TrmpgvUy = LB + LR
rmgvy = rmpVs + lw
1 v

_ 2 S
TMgVy = rMgVs + —Mpr* —
BVo BVf T3 MR~
mpg
mpgvy = Vy m3+?
mpVy
vf_ mpg

m3+3



6 Oscillations & Gravity
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6.1 Kepler's Laws
Johannes Kepler was a 17th century German dude who came up with laws about planetary motion when
studying data about the motion of Mars around the Sun.
Like Newton's Laws, there are three:
1. Planetary orbits are ellipses. The sun will always be on one of them.
2. Connect the sun and the planet with a line. That line sweeps out equal areas in equal amounts of
time.
3. T? x 73

6.1.1 Kepler's Second Law

A planet-sun system, in isolation, normally does not have external forces acting upon it. Therefore,
angular momentum is conserved.

That means, as the planet gets closer to the sun, its speed increases, and vice versa.

L=7Xmv
1
r«=

v

Then it also makes sense for when the planet travels slower and farther from the sun, should cover the
same area as compared to when the planet travels faster and closer to the sun.

6.1.2 Kepler's Third Law

Assuming circular motion:

Fpet = ma
GmM v?
= m—
r2 T
M
v= |—
T
And period, the time needed to complete a full revolution:
21
T=—
W
_ 2nr
v
_ 2nr
M
r
T=2 / 4
= 2nr oM
21
TZ — .3
M’

This concept can be extended to ellipses by replacing radius with the semi-major axis.

6.2 Gravity

6.2.1 Gravitational Potential Energy
We have already discussed this topicin 3.1.2.

1 1
AUG = Gmlmz x__;
L



Gmym,

Ug = —
G T

6.2.2 Escape Velocity
Assuming no atmospheric drag:
Gmmg 4 lmvg _ Gmmg 1
7"@ 2
To completely escape the gravitational field, we will need infinite separation.
And to obtain the minimum velocity needed, the final velocity will be 0.

_ Gmmeg + lmvz = — lim Gmme
7"@ 2 0 h—oo T@ +h

1 ) Gmmg Gmmg
—mv§ = —
) 0 c T@ h—oo T@ +h

m
=8

e

ZGm@

vo =

L)

6.3 Simple Harmonic Motion
6.3.1 The Second-degree Differential Equation

Simple harmonic motion, by definition, is when the restoring force is proportional to the displacement:
ma = —Cr

d?r

i

Does this look familiar?

Hooke's law states that:

=—Cr

ma = —kx
d?x
mm = —kx
We can solve for the differential equation:
d?x k
a2~ m

And the general solution to that is:
x(t) = Acos(wt + @)
2 _k

Where w

6.3.2 Small Angle Approximation
Before we move onto examples, we must first discuss this.
For this segment, O denotes opposite, A denotes adjacent, H denotes hypotenuse, and S denotes arc
length with adjacent as radius.
For a very small angle:
Asf - 0,0-0

H=A

'9—0 O—t 0
Sin —H~A—an

g0 S _6A_
ME=A¥aTa "
~sinf = 60

Or a simpler explanation:



I sinf 1
00 0
sin0 =0

~sinf = 6

6.3.3 Simple Pendulum
To solve for a motion of a simple pendulum:
F =ma
d?s
dt?
Using small angle approximation:
d?(6r)
—99=—4p
g d?e
ro o dt?
And using the general solution:
0(t) = Acos(wt + @)
Where w? = %

—-mgsinf =m

6.3.4 Torsional Pendulum
If there are linear pendulums, there must be torsional pendulums.
To solve for their motion:

T=Ia

dzo
_kQZIW
k _d29
10 de?

And using the general solution:
0(t) = Acos(wt + @)
Where w? = %



Conclusion
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Many have enrolled themselves in the course the year before. Many have regretted that decision and
dropped out before school started. Many have been deterred by the extreme pace that this course
requires, and have switched over to Physics 2 or Physics 12, in search of easier material. Many have felt
dejected when they first see a 30% on their first test.

A few will have triumphed. A few will have persevered. A few will have suffered. Maybe you are one of
them. Maybe you are not. But if you have reached here, you must be tired after all those physics
concepts and differential equations. Take a break. Do not be afraid to stop. Physics isn't for everyone.

If you are still reading, congratulations. Mechanics was a massive hurdle, but from here onwards, it is
only an uphill battle. Brace yourself for more strenuous times, and | wish you good luck.

Boris Li
6 August, 2020



Appendix: Moments of Inertia
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Sphere

Solid, rotating around centre

Moment of inertia of a disk:

1—1MR2
2

Treating a sphere as infinitely many disks stacked together:

dl—l 2d
=gridm

1
dl = > prrtdx

1
dl = Epn(R2 — x?)?%dx
R

1
1= fipn(Rz — x?)?%dx
iy

R
1 M
— 4 _ 2.2 4
I—vaf(R 2R“x* + x*)dx
—R
R
pol M, 2R23+x5
Rty \M T3t T
-R
1 M 4 2
—_ 5 _ _p5 ~ p5
I_va<me L +5R>
1 3M (16
~ 2" 4R\ 15
2
I =-MR?

5

Aside:
_ M

P=7
_ dm
av

x being the distance on the axis, from the
centre:
dm = p(nr?dx)

x, r,and R readily form a triangle:
R?=x%2+712
r2 = R2 — 52



