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| often think that Mechanics burns you out, and E&M deals the killing blow in Physics C. Without a
proper foundation in AP Physics 1, and a firm grasp on most basic concepts, Mechanics can often
introduce unnecessary variables (ahem, calculus) and complicate your journey through physics. | would
say | have fallen into this trap, not doing any revision the summer between Physics 1 and Physics C.

On the other hand, the material taught in Electricity & Magnetism are not purely E&M, but also involve
mechanics concepts, such as tension and density. Unlike mechanics, it is often difficult to visualize
concepts in E&M, and if you have stumbled along the path of Mechanics, navigating through E&M can
only be described as full of tripwires and obstacles.

| will attempt to convey concepts as clearly as possible, as to help future physics students. If you are
ever lost, | hope this document can ever guide you so slightly.

Boris Li
6 August, 2020



7 Electrostatics
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Electrostatics. Stuff that doesn't move.
In the following sections, we define:
Coulomb's constant:

1
4meg
Magnetic constant:
_Ho
M= am

Where &, vacuum permittivity, and p,, vacuum permeability, are physical constants that

are related as such:

1
Eolo = 2z

7.1 Coulomb's Law

Coulomb's Law is basically Newton's Law of Universal Gravitation but for point charges.
Force is proportional to the inverse square of distance, giving us the equation:

ququ
|Fe| =

Two insulating balls with mass m and charge q are separated by a distance r, and are hanging
from the ceiling by two pieces of string of negligible mass. The balls are in equilibrium and are
not in motion.

Considering horizontal components:

FrcosO = Fg
k 2
Frcos8 = £
Considering vertical components:
Frsin@ = F;
Frsinf = mg

7.2 Electric Field

A gravitational field vector can be defined as:
Gmm
Fy = 1 2

= g1(r)m,

Gm1

Where gl(r) =
g1 is the gravitational f|eId created by m;.

Same can be said for an electric field:
keqiq; -
72 = E(r)q;

= k
Where E; (1) = —fgl
E; is the electric field created by q;.

FE:

7.2.1 Electric Field Lines

Few rules:
1. Goes from positive to negative charges



2. Higher density of lines indicate a larger electric field, and a larger charge.

7.2.2 Continuous Charges

A rod of length L lies on the x-axis has charge +Q evenly distributed throughout. Find the electric

field at a point a away from the end of the rod on the x-axis.

kgd
dE = Ezq
T
dq
E:kE T‘_Z
a+L
dr
E:kEAf T'_Z

E— Q 1 +1
" 4megl\ a+L a

. Q 1 1
C4mggl\a a+L

Aside:
_Q

"
-

A_dr

A rod of infinite length that lies on the x-axis has charge density of A = Alﬂ Find the electric

field at a point x, away from the end of the rod on the x-axis.

kgd
dE = Ezq
r
dq
E:kEfr—z
oO/lx
E:kEf 5 dx
X0

1
ot

Aoxo

- 2
8mepxg

A ring of charges with radius a centered around the origin lies on the yz-plane with a total
charge of +Q. Find the electric field at a point x away from the origin on the x-axis.
We know that the y and z components cancel each other out.

Finding the x-component:

kgd
dE = Ezq
rk d
gaq
dE, =i cos 6
krdq x
dE, = .
x*+a? \x2 + a2
kpxd
E:_[ gxdq !
(x? 4+ a?)2
X
E = 3qu
4mey(x? + a?)2
X
E = <

3
4dteg(x? + a?)2

Pythagorean theorem:
r? =x%+a?

Aside:



} MI.1 —_— /Lt
_ @
qu =5 2ma

qu=Q

A disk of charges with radius r centered around the origin lies on the yz-plane with a total charge
of +Q. Find the electric field at a point x away from the origin on the x-axis.

Treating the disk as an infinite number of rings:

X
dE =

zdq
dmey(x? + 1r2)2
s 2nrodr
dmrey(x? + 1r2)2

T

2mox r
= f 3 dr

dE =

Ameo 0 (x2+712)2
x2 412
E= ox 1 _%d
T2¢ ) 247
xZ
x2472
E= ox 1
28\ Vu 2
X
. ox (1 1 )
260 \X  x2 4712

Q X X
- 2mr2e <; - m)
“z )
2nr2eg Va2 + 12

Aside:
sol_Q
A mr?
dq
°Tda
__dq
T 2mrdr

u/du substitution:
u=x?+r?
du = 2rdr

A cylinder of charges with radius r and height x, — x4 centered around the x-axis, has both ends
lying on the yz-plane with a total charge of +Q. Find the electric field at a point x; away from

the closer end of the cylinder.

Treating the cylinder as an infinite stack of disks:

1 X
= 1- d
2mr2eg, < Va2 + r2> 1

g =P (1o X )q
T 2mr2e, VxZ + 12 x
X
E=-- 2(1 a )d
= ————dx
250 Vx? +r?
x3 +r2
1
250 fdx— f —u 2du
x7+712
xZ+12
=2—£0 (xz — x1) — (V) 2412

Aside:
_o___«@
P=y= r2(x, — xq)
dq
P = rzdx

u/du substitution:
u=x%+r?
du = 2xdx

Q 2 2
E=2nr2(x2—x1)so Xy — X1 — |x5+712+ [xi+712

7.3 Electric Flux



7.3.1 Definition
Flux can be described as the amount of rays that pass through a certain area.
Flux is determined by two variables:
1. Area, in which by increasing it, increases flux;
2. The amount of rays, i.e. the electric field, in which by increasing it, more rays are
produced, and flux is increased.
It can be described in this equation:
by =E-A
Beware that flux only considers the rays that pass through, so as the area tilts, the perpendicular
area that rays can pass through decreases, and flux is diminished.
When the area is completely parallel to the direction of the electric field, no flux is present.

For a closed surface, the only way to obtain positive flux is to put the object inside the closed
surface, since there will always be a net amount of electric field lines leaving the enclosed space.
It is impossible to obtain negative flux, since putting an object outside of the enclosed surface
will result in every single electric field line entering and leaving the closed surface, resulting in a
net electric flux of zero.

7.3.2 Gauss' Law

If there is an equation that describes stuff algebraically, there must be a calculus version.
b, =E-A
ddy =E-dA

A point charge is at the centre of a sphere with radius r. Find the electric flux through the sphere.
Using the definition of electric flux:

P, =FE-A
The electric field lines are always perpendicular to the surface of the sphere.
(DE = EJ
qu 2
CDE = T—24T[T'
__41
E 4meg
CDE - i
€o
Gauss' Law describes exactly this relationship.
o =fpEai=2
€o

Gauss' Law can be used to find the electric field, once we choose a Gaussian surface enclosing
that charge. Tips:

1. E - dA should equal 0 (E L dA) or EdA (E || dA).

2. ForE I dA scenarios, E should be constant.

For an infinitely long rod of charges with uniform charge density of A, find the electric field at a
point r away from the rod.
Using a cylinder as our Gaussian surface:
f F.-ai=21
€o
For the ends of the cylinder, no electric field is present.
For the sides of the cylinder, the electric field is perpendicular to the surface.



&0 Aside:
R _Q
2nrLE = — L
r o L
E _ A
© 2mre,

For an infinite plane of charges with uniform charge density of g, find the electric field at a point
r away from the plane.
Using a cube as our Gaussian surface:
fﬁdﬁ=i
€o
For the sides of the cube, no electric field is present.
For the top and bottom of the cube, the electric field is perpendicular to the surface.

- ~ 0OA
EfdA = —
€o Aside:
25i =2 o=2
= 1
ZE

The electric field is constant everywhere.

For an insulating sphere of radius R with uniform charge density of p, find the electric field both
inside and outside of the sphere. Express in terms of r, the distance from the centre of the
sphere.

Using a sphere as our Gaussian surface:

Inside the sphere:

fﬁ.d/f=i
€o

The electric field is perpendicular to every part of the spherical surface.
[ - 4mr3p
E f dA =

3&o Aside:
-~ 4mr3p p= Q
Anr?E = %4
350 Q
— rp p=
E=— 4 3
350 §T[T‘
Outside the sphere:
fﬁdﬁ=i
€o

The electric field is perpendicular to every part of the spherical surface.
- ( - A4mR3p
E f dA =

SEN Aside:
4mr?E = AnRp -2
380 4 Q
— _ R3,0 p = 4
3r2g, 3 TR3

The combined answer can be expressed as:






8 Conductors, Capacitors, & Dielectrics
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8.1 Electric Potential

8.1.1 Comparison
Considering gravitational potential energy:

The energy needed to move from point a to point b is:
AUG = _WG

AUG:_J‘ﬁG'dF

TB

GMm
AUG = — f — 1‘2 ‘d'r
ra
GMm|"®
AU, = ——
ra
1 1
AU; = GMm|———
A TB

We can say this is the change in gravitational potential energy when moving an object m in
regards to another object M.
However, if we take away mass m and only look at object M, we can say:

1 1
AVe=GM | ———
A 7B

This is the change in gravitational potential, i.e. the change in energy per unit mass.

Considering electric potential energy:
The energy needed to move from point a to point b is:
AUE - _WE

AUE=_—[ﬁE'dF

TBk
AUEz—f igq-dr
TA -

k B
AUy = £Qq

r -

1 1
AUg = kgQq -

B Ta
We can say this is the change in electric potential energy when moving an object q in regards to

another object Q.
However, if we take away charge q and only look at object Q, we can say:
1 1
AV = kgQ (E - a)
This is the change in electric potential, i.e. the change in energy per unit charge.

8.1.2 Definition

Change in electric potential is defined as:



AU
=
And because ... blah blah blah ... definition ... blah blah ... reciprocal ... blah blah ... infinity ... zero:

1 1
AV =kgQ <—— lim —)

Tp Taw®Ty

AV = kEQ—
1s:;
k
L _ksQ
T

And multiple distinct charges:

And continuous charges:

kgd
szEq
r

Simple, right?

Given a semi-ring of charge with radius R and total charge of Q, find the electric potential at the
centre.

V= kadq Aside;
r 1=9-<
kgAdL L mR
v—f 1= da
dL
k A
£ f dL
kgQ
V= ?T[R
__0
4‘7TR£O

8.1.3 Equipotential Lines

Lines that show the same electric potential around an object.

Recall that to traverse a volt means a joule of energy needed to move a coulomb of charge.
Electric field lines are perpendicular to equipotential lines.

Tighter equipotential lines mean stronger electric field.

AU
AV = —
q
-w
AV = —
qa
—(F-dr
AV = I
qa
— E -dr
AV Jq
q
AV:—fE“-dF
dV = —E - dr
dr

i.e. An larger increase in electric potential over the same distance results in a stronger electric



field, and vice versa.

So, given an equipotential chart, we can approximate:
AV

E»‘v’——a
Ar

8.1.4 Conductors

Free electrons can move freely inside conductors. As a result, it will always be in a state of
electrostatic equilibrium. Excess charge will be forced to the surface.

1. Electric field inside a conductor is O.

2. Electric field lines will always be perpendicular to the surface of the conductor.

3. Electric field outside of the conductor can be treated as if the conductor is a point charge

at its centre.

This implies:

1. Electric potential inside the conductor is constant.

2. Electric potential at the surface is also the same constant.

8.2 Capacitance
8.2.1 Mechanism

A capacitor stores charge via two conductors separated by a insulating region.
The capacitance of a capacitor can be defined as:

Where one plate has a charge of +@Q and the other —Q.
Note that the capacitance of a capacitor stays constant even as the voltage and the amount of
charge changes.

8.2.2 Electric Fields

An electric field is produced by the two separated parallel plates:

.0
# E-dA= PN Aside:
. Q
For the positive plate: o= 1
Using a cube as our Gaussian surface:
oA
E-2A=—
€o
0
T 2¢g

We know that, in a circuit, the negative plate should have the same charge, and since parallel
plates have the same area, they have the same electric field.

g o
total — &
Therefore, the change in electric potential is:
AV = —fE -dr
AV = —Ef dr
AV = —Ed
od

€o



AV = ——
oA

Q A
AV d

We can say, by altering the area of the plate and the distance between the plates, capacitance
can be altered:
A
c =2
d

8.2.3 Dielectrics

Dielectrics align themselves in the presence of an electric field.

Since opposites attract, negative charges are attracted to the positive plate, and positive charges
are attracted to the negative plate.

Since electric fields flow from positive to negative charges, an electric field in the opposite
direction is produced, and the net electric field strength is reduced.

And from this equation, we know:

AVz—fE-dr

When electric field strength decreases, the difference is electric potential also decreases.

But in the presence of a battery, the potential difference between the plates must match the
voltage of the battery, and such that, the electric field produced by the plates must increase in
strength to match the battery.

And from this equation, we know:

#E-dﬁz%

When the electric field of the plates increase, and the area of the plates remain unchanged,
charge must increase.

Q
%4
And with charge increasing, electric potential staying constant, capacitance must increase.
To take into account the effect of a dielectric, we alter the equation:
KEQA
d
Where k is the dielectric constant, the multiplicative factor that a dielectric material has
on capacitance.

C =

8.2.4 Energy Stored

The electrical energy stored by a capacitor can be expressed as the work done on the capacitor:
Work here means work done by the capacitor:

W =-AU
W = —qAV
Work here means work done on the capacitor, to eliminate the negative sign:

dW = —AVdq

q
dW = ——=d

C q
w Q
f aw = f ~14

C q
0 0
QZ

W=U,= _1 AV—1CAV2
- C‘zc‘zQ )



9 Circuits
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9.1 Current & Resistance
9.1.1 Current

Current as defined as the amount of charge that passes per unit time:
aqQ

Codt

If we look at a wire of length Ax and cross-sectional area A:

AQ = number of charges - elementary charge
number of charges

I

AQ = volume - - elementary charge

AQ =AAx-N-e
IAt = Av;AtNe
I = NeviA

volume

9.1.2 Ohm's Law

Current density is defined as:

I
J=- Aside:
A 1
And Ohm's Law states that: =_
] =oE o
E=p]
To obtain the common form of Ohm's Law:
AV = —fE -dr
AV = Ef
AV = 1{’
o
AV = 1E4
T oA
AV =1 ¢
~ oA
AV = IR
Where resistance is defined as:
v pt
oA A
9.1.3 Power
Power is defined as:
_ au
= gt
P =—(qAV
T (qAV)
P = dQ AV + d
T dt dt
P=IAV+0
P =IAV

Alternate forms:



(av)?
R

P =1I?R =

9.2 Kirchoff's Rules
9.2.1 Loop Rule & Junction Rule

The loop rule states that:
The sum of voltages in a closed loop is 0.
The junction rule states that:
The sum of currents entering and leaving a junction is 0.

9.2.2 Resistors

For resistors connected in a parallel circuit:

For resistors connected in a series circuit:
AVy =IR; + IR, + IR3 +

AV.
Rs="= )R

9.2.3 Capacitors

For capacitors connected in a parallel circuit:

Q = CAV
dQ  dv
dt dt

oYYy Yy
_1dt 2de " 3 dt

c Idt ZC
P AV

For capacitors connected in a series circuit:

Qr Qr  Qr
AVp =L 4 L 2T
T Q+Q+Q+

o-(3) +(23)

9.3 Charging

9.3.1 Electromotive Force

Electromotive force is the maximum voltage that a battery can output.

For a real battery, there must be an internal resistance, which is defined as the following:
AV =¢e—1Ir

The voltage represented here is the actual voltage output.

I7

9.3.2 Capacitor Charging
Given a circuit consisting of a battery €, a resistor R, a capacitor C, and a switch. The switch is
initially open, and the capacitor is uncharged. Find the charge on the positive plate and the

current through the circuit as a function of time as the switch is closed.
e—IR-V,=0



7= u/du substitution:
—Cdu _dt ¢
R du=—-——=d

u v q

The rate of charging is determined by the exponent term.
When t = RC, the exponent equals to -1.
We define the time constant as:

T =RC

9.3.3 Capacitor Discharging

The battery is removed from the circuit, and the capacitor is now charged. A switch, initially
open, replaces the battery. Find the charge on the positive plate and the current through the
circuit as a function of time as the switch is closed.

—IR-V,=0
dq = q
———R—-—==0
at €
9,__4
dt c
dq dt
qg —RC
d 1 (
_q:__fd
q RC
Qmax 0
In—2 !
n =——
Qmax RC

Since a fully charged capacitor is when time approaches infinity in the previous section, we can
determine that ¢ = Ce:
t

q = Cee RC






10 Magnetic Fields
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In Physics C, when we refer to the magnetic field, we exclusively refer to the B-field, and not its
counterpart, H-field, in of which the M-field is composed of.

10.1 Magnetic Force
10.1.1 Force on a Charged Particle

When a charged particle moves through a magnetic field, a magnetic force is applied on the
particle. The force is:
Fy=qvxB

In which the three vectors point in the 3 directions perpendicular to each other.
The directions can be summarized with the right-hand rule, assuming the direction of
conventional current:

1. The force points upwards, with your thumb;

2. The velocity points forward, with your index; and

3. The magnetic field points leftward, with your middle.
As long as your fingers remain perpendicular to each other, rotate your entire hand to find the 3
directions.
When asked about the direction of electron flow instead, use your left hand.

10.1.2 Force on a Wire

We can extend the concept of a charged particle into a continuous flow of charged particles in a
wire:

ﬁB = q'l; X E
The total force must equal the forces on each charge multiplied by the number of charges.
ﬁB =q(v % ljl)4£ Aside:
sz :71(‘117‘4@ B I = NevjA
Fg=ILXB I =nqvzA

And if the wire is not always straight:
Fo=1[dixB

The right hand rule still applies here:
1. The force points upwards, with your thumb;
2. The length/current points forward, with your index; and
3. The magnetic field points leftward, with your middle.

A wire sits on the xy-plane, and runs along the circumference of a semicircle of radius R, before
completing the loop by running across the diameter on the x-axis. A magnetic field of strength B
travels from -y towards +y. Find the force the magnetic field exerts on the wire loop if a current
of I travels counterclockwise in the wire loop.

Splitting the wire into two segments, the diameter and the circumference.

Considering the diameter:

F, = ILB
F, = 1(2R)B
F, = 2IRB

From the right hand rule, the force points out of the page in the +z direction.
Considering the semicircle:



F2=1dexB

Since we are only taking the perpendicular portions:
F, = IdesinBB

T

F, =IBszin9d9

0

F, = IBR(— cosm + cos 0)

F, = 2IRB
From the right-hand rule, since the perpendicular portion of the current points left, the force
must point into the page in the -z direction.

ﬁB:Fl'i'Fz:O

10.2 Magnetic Field

While we have talked about the existence of a magnetic field, we haven't discussed where they
came from.

10.2.1 Biot-Savart Law

In early 19th century, there was a dude named Oersted who was playing with apparatus
demonstrating electric currents. There happened to be a compass beside that apparatus. He
noticed how the compass pointed in a different direction when current was generated.
Later, dudes named Biot and Savart performed more experiments determining the exact
strength of magnetic fields produced by these currents. The result is the following equation:

~ de x #
dB = kMI T2
~  po dfXT
dB = —
4 13

The right-hand rule still applies:
1. The magnetic field points upwards, with your thumb;
2. The length/current of the wire points forward, with your index; and
3. The direction of from the wire to the location points leftward, with your middle.

A loop of wire following the circumference of a circle with radius a lies on the yz-plane, with the
centre lying on the origin. When viewed from the right side, looking towards the -x direction, a
current I travels counterclockwise. Find the magnetic field strength a distance x away from the
the origin on the x-axis.

dB =k Id?Xf
= kul —
_ d?

4B =kul oz iy

Since we know that the circle applies a magnetic field in every angle, the yz-component is
canceled out.

Considering we take the the x-component of the B-field, and the current travels perpendicular
to the radius, the #-component must be parallel to the radius:

~ de
B = kMIfmCOSQ




2ma

B =kyl ——— f d¢
(a? + x2)2
B= Z ———
T (a? + x2)2
- la?
B = Ho

3
2(a? + x?)2

10.2.2 Ampere's Law
That was really complicated right? Well, just as how Gauss' Law simplified the method to find
electric fields, Ampeére's Law simplified the method to find magnetic fields.

Consider a wire of infinite length with current 1. Find the magnetic field at a distance a away
from the wire.

de x #
dB = kuyl
By the right-hand rule since the #-component is parallel to the radius, and the magnetic field
must be always perpendicular to the radius and the wire, and therefore run in circles around the
wire.

+ 00 —
B = kyl f i :
oM 2 + a?\[p2 ¥ q2 u/du substitution:
"% _ £ =atanu
§=kMIa2f ad df =asec’udu

3
o (£2+a?)2
T

_ F asectudu
B = 2kM1af .
o (a?tan?u + a2)2
_ asec’udu
B= 2kM1af
a3(tan2 u+ 1)2

5 f asec’udu

N a3sec3u
B = 2kyl f du

= cimia a?secu
— 2kyl
B = M cosudu

—~ 2kyl/ mw
B = (sm— — sin 0)
a 2

ol
2ma

>v7)
Il

Let us derive Ampere's Law.

ForB-ds,s being the circular path around the wire, B |l ds, therefore:
B -ds = Bds

We also know along a circular path, with the same radius, B is constant:

fﬁ-c@



=des
=Bj€ds

I
_ﬂﬁds

" 2ma

= Hol
For an Amperian Loop (analogous to Gaussian surface),

fﬁ'dg":#ol

Now that we have the knowledge of the magnetic field outside of the wire, let us find the
magnetic field inside the wire.

Consider a wire of infinite length, radius R, with current I. Find the magnetic field at a distance a
away from the centre of the wire, where a < R.

f B-ds= Holenc

na?®

B(2ma) = pg—1I
(2ma) Ko7
= Hola
B "~ 2mR?

Be aware that when choosing an Amperian loop, magnetic field should be constant to simplify
calculations.

10.2.3 Solenoids
Notice if a current runs through a solenoid, the magnetic field outside of the solenoid is

approximately zero.
Choosing a circular path around the outside and the centre of the solenoid:

fﬁ - dS = polenc
EJ. ds = ponLl

BL = ponl
Where L is the length of the solenoid, and n is the number of loops per unit length.



11 Electromagnetism
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11.1 Electromagnetic Induction
11.1.1 Magnetic Flux

Just as how electric flux is defined as the electric field going though an area, magnetic flux is
defined as:

ch:#E.dz

11.1.2 Faraday's Law & Lenz's Law
If a current can induce a magnetic field, then a magnetic field must be able to induce a current.
Faraday's Law states that:
ddg
dt
A change in magnetic flux will create an electromotive force.
And Lenz's Law states that the current produced opposes the change in magnetic flux.
In other words:

ddg

dt
In which with the right-hand rule:

1. The magnetic field points upwards, with your thumb; and

2. The current goes clockwise, opposite to your fingers curling counterclockwise.

le| =

E =

11.2 Inductors
11.2.1 Inductance

An inductor is a coil of wire that can store energy in a magnetic field given a current, and can
generate a current when the energy is released.
Inductance is defined as the ratio between those quantities:

®p
L=—
1
Plugging this equation into Faraday's law:
_ d®g
T T a
_ d(LI)
T T A
_ di
AT

We have now formulated a relationship between inductance, voltage, and the changing current.

11.2.2 Inductor Charging

Given a circuit consisting of a battery €, a resistor R, an inductor L, and a switch. The switch is
initially open, and the inductor is uncharged. Find the current through the circuit as a function of
time as the switch is closed.

IR—1L af =0
€ dt
L dl = IR
ac ¢
I t u/du substitution:

rodi rdt -



u/du substitution:

I t
f dl :fﬂ u=¢e—1IR
e—1IR J L du = —RdI

Rt
In(e—IR)—lne=——

L
e —1IR _Rt

—=e L

£

Rt
e—IR=¢ce T
IR = &(— e_%)

1=54C T
_R —e

11.2.3 Inductor Discharging
The same inductor is now charged. The battery is replaced by a open switch. As the switch is
closed, find the current through the circuit as a function of time.

IR Ldl—o
dt
Ldl— IR
dt
1 t
dl Rfdt
I L
Io 0
| I Rt
"L
I _Rt
—_ = L
L, ¢
_Rt
I:I()e L

Where I = %.

11.2.4 Energy Stored

Since we know that voltages:

IR LdI—O
€ dt

And we can deduce that power P = [AV:
dl
le—I?R—IL—=0
dt
The power of the inductor is:

P—ILdI
T de

And since:
dQ
=3
aQv
AV = V)

dt

p_ U
T dt

The energy stored by an inductor is:




du dl

= L=
dt dt
dU = ILdl
1

de = fILdI

1 0
AU = = LI?

2

11.2.5 LC Circuits

Given a circuit consisting of a capacitor C, an inductor L, and a switch. Find the current through
the circuit as a function of time as the switch is closed.

Same thing as we have done in RC and RL circuits:

q dl
S L—=0
C dt2

d
a_,24
C dt?
1 d’q
c?™ ar

Remember simple harmonic motion? Time to pull those out again:
q(t) = Acos(wt + @)

1
Where w? = —
LC

Depending on the starting conditions, whether the capacitor or the inductor is fully charged in
the beginning, the phase shift changes to accommodate that.
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For you, this might be close to the end of the year, cramming the last little bit of information, doing
every single possible past paper, familiarizing yourself with all the concepts mentioned. To that, | wish
you good luck.

For you, this might be the start of a school year, where you are anxiously anticipating a world of physics
currently beyond your grasp, and you are diligently previewing the material that you are about to be
presented in the coming year. To that, | wish you a safe journey through the course.

For you, this might be nostalgic. You might be sitting down in front of an ancient device, browsing a
document in a format long abandoned, remembering details that have been long forgotten. To that, |
hope this invoked happy memories.

For you, this might be an exemplar. You might be doing science that is far and beyond the scope of what
| can dream of as | am writing this, and these notes may serve as a way to either return to the
fundamentals, or a method for grasping the natural flow of learning physics.

As for me, this is the end of an era. These notes serves as my last experience of high school, where |,
fittingly, leave behind a stash of notes for high school students. As | venture beyond this point, | hope
you had a great time learning the concepts of introductory physics.

Boris Li
17 August, 2020



