Introduction
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The actual BC part of the calculus course was taught in the second half of the year, after Christmas
break. The notes were not the renewed version that is probably used starting 2020, but | am confident
that | can deliver a clear, restructured version of these concepts.

Boris Li
15 July, 2020



1 Series
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The concept of series is closely linked to the integral; integration is merely a series that, instead of
adding intervals of length 1, adding intervals of the length of a differential.

1.1 Concept
1.1.1 Finite series

n
Zai=a1+a2+a3+--'+an_1+an
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1.1.2 Infinite series
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If T{l_r)go a, converges/diverges,z a; converges/diverges.
i=1

1.1.3 Geometric
A geometric series has terms that differ by a ratio.
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Convergence || < 1

Divergence |r| = 1
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1.1.4 Harmonic

21—1+1+1+1+
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n=1

Always diverges.

1.2 Convergence Tests
Note: These tests have not been rigourously proven in AP Calculus BC.
1.2.1 nt™ Term Test

[o0]
If Z a, converges, then lim a, = 0.
n—-oo
n=1
(o0}

If lim a, # 0,then Z a, diverges.
n—-oo

n=1

If the series converges, the ratio must be smaller than 1, then the terms must be approaching 0.
Conversely, if the terms are not approaching 0, the ratio must be at least 1, then the series must
diverge.



1.2.2 Integral Test

If a function is continuous, positive, and decreasing:

[ee)

Ef(n) converges/diverges as f f(n)dx

n=1 1
> ra~ | fovdx
n=1 1
This works, as Zz:f(n) is merely the RRAM of -[1 f(n)dx.

The RRAM is always smaller than the integral, so when the integral converges, the RRAM converges.

z F(n) = RRAM + f(1)
n=1

Convergence does not depend on first finite number of terms.

1.2.3 p-series Test
N iff 1
Z s converges iff p > 1.
n=1
Consideringp < 0,
The series diverges by the nt" term test, since the nt" term is infinitely large.
Considering0 <p <1,
The series is continuous, positive and decreasing within [1,00)
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b1~P goes to infinity, the series diverges.
Consideringp = 1,
The series is continuous, positive and decreasing within [1,00)
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The series diverges.
Consideringp > 1,
The series is continuous, positive and decreasing within [1,00)
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The series converges.

1.2.4 Alternating Series Test

Ifa, > an+1 and if lim,,,, a, =0,

z (=1)™*1a, converges.

If the terms get smaller and approach, the alternating series will eventually zero into a value, as the
partial sums oscillate around the value.

1.2.5 Ratio Test

an+1
an
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< 1then Z a, converges.

n=1
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If lim

n—-oo

an+1
an

If lim

n—oo

> 1 then Z a, diverges.
n=1
Like an infinite geometric series, if the ratio is smaller than 1, the series converges, and vice versa.

1.2.6 Comparison Test
Only use when positive. If 0 < a,, < b,

If z b, converges, Z a, converges.
n=1 n=1
©o [00]

If z a, diverges, z b, diverges.
n=1 n=1

If a larger series converges, the smaller one must also converge.
If a smaller series diverges, the larger one must also diverge.

1.2.7 Limit Comparison Test
Only use when positive.

If llm—>0then zan Zb
n—>oo

Since we know the ratio between the two terms exist, they must behave similarly, and only differ by a
ratio. They must share the same convergence.

1.2.8 Absolute Convergence Test



[oe]

[e0]
If Elanl converges, z a, converges.
n=1

n=1

[ee]
Z 2|a,| converges.
n=1

[ee)

By comparison, since 0 < a,, + |a,| < 2|ay,|, z a, + |a,| converges.

n=1
o] [00) oo
Since z a, + |la,| and z |a,| both converge, z a, must converge.
n=1 n=1 n=1

1.3 Power Series
1.3.1 Definition

cx™ is a power series centered at x = 0.

NgE

[ee]
Z c(x — a)™ is a power series centered at x = a.

1.3.2 General Form
(o]
Zx”:1+x+x2+x3+---
n=0
Geometric series, so convergence |x| < 1.
1
"
Conditions:
e Converge over an interval
e Always converge at the centre x=a
e Converge over all real numbers

1.3.3 Extension
Since:
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1+ x

In(1+x) = f i(—x)” dx
n=0

In(1 + x) =f
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Plus:
can-1 x — f dx
an - x= 1+ x2

an~lx = f Z (—x®)"dx
n=0
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1.4 Taylor and MacLaurin Series
1.4.1 Maclaurin Series
k 0 k 1 0 2 " 0 3
e )—Ef O — )+ (o + L2 LM,

1.4.2 Taylor Series

c k - k " _ 2 " _ 3
f(x)zzwzﬂaﬂf,@@_m;‘ (a)(;c @ f (a)gﬁlc @ |
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1.5 Convergence (for Power Series)
1.5.1 Radius of Convergence
When a power series converges below R and diverges above R, R is the radius of convergence

1.5.2 Interval of Convergence
The interval of convergence is between a-R and a+R.

1.6 Error Bounds
1.6.1 Alternating Series Bound

For series that are alternating and converge (see 1.2.4)
IS - Snl < Gn+1

Where S, is the partial sum, and a,,; 4 is the next term.

1.6.2 Lagrange Error Bound

For any function approximated using an nt" degree Taylor series (see 1.4.2)

If(b) = B(b)| < ——; CEEY b —al™**

Where M is the maximum value of f**1(z),a < z < b, for a Taylor series centered around x = a.



2 Non-Cartesian Functions
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2.1 Parametric Functions
2.1.1 Definition

Parametric functions are functions that describe coordinates as a function of another variable.

x = f(t)
y=g(t)
ast<b

t is a parameter, a is the initial point, b is the terminal point.
2.1.2 Conversion
Convert between Cartesian and Parametric by eliminating the variable t through substitution.

2.1.3 Calculus

dy dy dt
dx dt dx
dxiO

dt

A parametric function only has a derivative when both x and y have derivatives.

2.2 Vector Functions

Think physics.

2.2.1 Definition

Similar to parametric functions, vector functions describe a trajectory using two different functions.
s() = (x(0), y(©)
s(t) = x(®)T + y(©)f

2.2.2 Calculus
Velocity
s'(t) = v(t)

Acceleration

s"(t) =a(t)

Speed (magnitude of velocity)
2 2
. dx dy
v J (@) (%)

2.3 Polar Functions
See Appendix 1 for graphs.
2.3.1 Definition

Polar coordinates (r, 8)
Polar functions r = f(6)

2.3.2 Conversion

y =rsinf
X =rcosf
2.3.3 Calculus

Slope of tangent
dy y' (rsing)
dx x' (rcos@)
Area of a region
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3 Supplemental Concepts
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3.1 Limits and L'Hopital's Rule

3.1.1 Limits Evaluated as a Derivative
See Calculus AB 4.0.

oo = i [EHD =T
(o) = iy L /@
) = 1 L@

a X—a

3.1.2 Limits Evaluated using L'H6pital's Rule
See Calculus AB 5.7.
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fr9=7
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When oo — o0
These often appear in the form of a fraction, where the denominator approaches 0.
Try multiplying the denominators together and form one fraction.

1 1 g-—f

f g9 fg

When an exponent exists
Try taking the logarithm of both sides. It should simplify to the above scenarios.

3.2 Logistic and Exponential Growth

3.2.1 Exponential Growth
Where the growth is dependent on the quantity

i.e. the derivative is based upon the original function

dP_kP
dt_

—dP fdt

In|P| =kt +¢
P = efekt
P =Cekt
3.2.2 Logistic Growth

Where the curve reaches a maximum
i.e. Sigmoid curve
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3.3 Euler's Method

Iterative method to approximate a value, given a derivative function
y(@)=b

d
E(a+Ax)=b+—y‘ Ax
dxa

d d
E(a+2Ax)=b+—y Ax+—y Ax
dx dx
a a+Ax
n dy
E(a+nAx)=b+Z— Ax
k=1 x a+(k—-1)Ax

3.4 Length of a Function
3.4.1 Arc Length of a Cartesian Function

y=fx)
(Ax)? + (Ay)?

L= J@?+ @y
L= f J@0? + [@y)?

_ f(dx)2 + (dy)?
L= f —(dx)2 dx
b TN

_ ’ o
L= f 1+ (dx) dx

3.4.2 Arc Length of a Parametric Curve

L= f @02 + ()2

f (dx)? + (dy)?

Co@?
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3.4.3 Arc Length of a Polar Curve

L=f¢wm2+uw2
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4 Integration Techniques
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4.1 Improper Integrals
Integrals which involve oo.

J:of(x)dx

b
= lim f fx)dx
b—oo a
b
= lim F(x)
b—)OO a
= I}irrgo F(b) — F(a)

4.2 Integration by Parts

4.2.1 Reverse Product Rule
(uwv) =u'v+v'u
d(uv) = udv + vdu

fd(uv) = fudv+jvdu
fudv=uv—fvdu

4.2.2 Tabular Integration by Parts
Also called the Tic Tac Toe method

[ rageax
@ g
f'x) f I

f"(x) ﬂ I dx?

ff g(x)dx? *
0 : :

[ regeax = 1@ [ g@ax - 16 [[ gax + 77 [[[ g@ars =+ ¢

Tips:

1. Differentiate in this order:
a. Logarithms
b. Inverse trigonometric functions
c. Power functions
d. Trigonometric functions
e. Exponentials

2. Integrate what you can. Differentiate the rest.



3. If nothing else works, try integrating 1.

4.3 Partial Fractions
Since
A 4 B Alx+b)+Bx+a)
x+a x+b  (x+a)(x+b)
Then
(A+B)x+Ab+Ba_ A B
x2+(a+b)x+ab x+a x+b
And thus

f Cx+D _f A, B,
x2+(a+b)x+ab x= x+a x+b x

Where
A(x+b)+B(x+a)=Cx+D
(A+B)x+Ab+Ba=Cx+D
(Aa+B=cC
"{Ab+Ba=D




Conclusion
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| studied the AP Calculus BC in my grade 11 year, and have fortunately gotten a 5 on the exam. Looking
back, it was not fortune, or innate knowledge, or hard work that got me such results; the difficulty of
Calculus BC as compared to AB was simply not wide enough, and as such, anybody who is confident
enough to take the course will almost always be able to grasp the material.

Other than my own opinion, there is other evidence that suggests the difficulty of Calculus BC being
slightly too low. My fellow 11th grade classmates, Larry Yu and Christian Turpin, in their senior year,
have decided to take MATH 200 at the University of Victoria. On the r/APStudents subreddit, it is a
common occurrence to see students drafting scores for imaginary courses: 5s for AP Minecraft, 6s for AP
Procrastination, and interestingly, many of which included an AP Calculus CD course. This phenomenon
indicates the students' wishes to establish a more difficult course for calculus, one that maybe
encompasses the material from MATH 200 courses, or introduce proofs using epsilon notation.

However, no matter how easy for me this course was, | absolutely do not regret learning all about
calculus before entering university. With these notes that | am currently finishing up, | hope you, my
reader, gain a passion for studying calculus in high school, or if you are looking back at this document for
revision, good luck on your exams.

Boris Li
21 July, 2020



Appendix 1 Polar Graphs

Monday, July 20, 2020 17:12

Special Polar Graphs

Simple

Red

Circle with diameter a, right of the origin.
r =acosf
0<6<m

Pictured in graph:
r =5cos6

Orange

Circle with diameter a, above the origin.
r =asinf
0<6<m

Pictured in graph:
r=5sin6

Blue

Anticlockwise spiral, expands a every 360°.
a
=—20
r 21
6=0
Pictured in graph:

r=260

Green
Vertical line at a.

Pictured in graph:
5
"= cos @

Limagons

Red

Inner-loop limagon.

Inner diameter* b — a

Outer diameter* b + a
r=a+bcosb

5l <
b
0<6<2n

Pictured in graph:
r=3+5cos6

Orange
Cardiod with diameter* 2b.
r=ax+bcos0

ol =1

o=
0<6<2m

Pictured in graph:

r=5+4+5cos@

Blue




B R LR = 1 it

r=5+4+5cos@

Blue
One-loop limagon, convex from origin.
Minor radius* a — b
Major radius* a + b

r=atbcosf

a

1<[f <2

0<6<2n
Pictured in graph:

r=7+5cos@

Green
One-loop limagon, concave from origin.
Minor radius* a — b
Major radius* a + b
r=azxbcosf

i
b
0<6<2m

Pictured in graph:
r=11+4+5cos@

*Not proper terms

Roses
Red
Rose with 2n petals and petal length of a.
r = acosnf
n
> EZ
0<6<2n
Pictured in graph:
r = 2cos 26

Blue
Rose with n petals and petal length of a.
r = acosnf

n+1EZ
2

0<6<m
Pictured in graph:
r = 3 cos 36

Lemniscate with petal length of a.

r = avcosnf

0<6<2m
Pictured in graph:

r = 4v/cos 26

*Fractional n is definitely possible, but are not
discussed in Calculus BC. In fact, a rose will have
finite petals iff n is a rational number.




Appendix 2 Integration Proofs
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Trigonometric Functions

Tangent
sinx
tanx dx = dx
cos X
U = COSX
du = —sinxdx

du
ftanxdxzf——
u

ftanxdx = —Inju|+C

ftanxdx = —In|cosx| + C

Cotangent
COoOsS Xx
fcotx dx :j dx

sin x

u =sinx
du = cosx dx

du
fcotxdx = | —
u

fcotx dx =Inlul +C

fcotx dx = In|sinx| + C

Secant

secx + tanx
secxdx = | secx——dx
secx + tanx

sec? x + secxtanx
secxdx = dx
secx + tanx

u =secx +tanx
du = (secx tan x + sec? x)dx

du
fsecxdx = | —
u

fsecx dx =Inlu| +C

fsecxdx = In|secx + tanx| + C

Cosecant



cscx + cotx
cscxdx = | cscx—dx
cscx + cotx

csc? x + cscx cot x
cscxdx = dx
cscx + cotx

Uu =cscx + cotx
du = (— cscx cotx — csc? x)dx

du
fcscxdxzf——
u

fcscxdx =—Injlu|+C

fcscxdx = —In|cscx + cotx| + C

Inverse Trigonometric Functions
Arcsine

f sin~! x dx

1

u=sin""x
dv = dx
fsin‘1 xdx = xsin"tx xdx +C
V1 —x?

fsin‘lxdx=xsin‘1x+ 1—x24C

Arccosine
f cos xdx

u =cos™ !

dv = dx

X

f cos™lxdx = xcos™

1 f xdx +e
x_ — —
V1 —x?

fcos‘lxdx=xcos‘1x— 1—-x24C

Arctangent
f tan~1 x dx
u=tan lx
dv = dx
xdx
ftan_lxdx =xtan 1x — f—2+ C
1+ x

1
ftan_1 xdx =xtan"!x — Eln(l +x3)+C

Arccotangent



f cot L xdx

u=cot lx
dv = dx
-1 -1 xdx
cot™“xdx=xcot™7rx— | — +C
1+ x2

1
f cot™lxdx =xcot™lx + Eln(l +x3)+C

Arcsecant
f sec lxdx

u=sec lx

X =secu
dx = tanusecudu

fsec‘lxdx= futanusecudu

u=u
dv = tanusecudu

fsec‘lxdx=usecu—fsecudu+C

fsec‘lxdx =usecu — In|secu + tanu| + C

c2+1=x?

c=+x%2-1
Where c is the opposite, the adjacent measures 1, x is the hypotenuse, all in reference to the
angle that measures u.

fsec‘lxdx =xsec lx —ln(lxl +yVx2—-14C

Arccosecant
f csc xdx

u=csc!
X = cscu

dx = —cotucscudu

fcsc_lxdx =f—ucotucscudu

X

u=1u
dv = —cotucscudu

fcsc‘lxdx=ucscu—fcscudu+C

fcsc‘lxdx =wucscu — In|cscu — cotu| + C

c?4+1=x?

c=+x2-1
Where the opposite measures 1, c is the adjacent, x is the hypotenuse, all in reference to the
angle that measures u.



fcsc‘lxdx = xcsc‘lx—ln(lxl —VJx2—-14C

Logarithmic Functions
Base Case

flnxdx:xlnx—f;dx+C

flnxdx=xlnx—x+C

General Case

flnxdx:xlnax—f;dx+C

flnxdx:xlnax—x+C

General Logarithms

J‘l dy = lnxd
ogpxdx = D X

1
flogbxdx—mflnxdx

1
flogbxdx —m(xlnx—x) +C

x
flogbxdx—xlogbx—m+C



