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The following document is the content taught in AP Calculus BC in 2018-19, by Mr Mathew Geddes in
SMUS, during the first half of the year, as recounted by me using notes and booklets that were created
in that same year. This material is replicated as per my understanding; if there are any incorrect
information, it is most likely due to my misunderstanding.

From what | remember, this is the first year in which the new booklets were used, and as such, there
were many mistakes printed and sample questions omitted on the booklet. As a result, | am attempting
to solidify my understanding by reviewing my knowledge of calculus before my journey into university.

Please bear with me as | recount my beginnings with calculus.

Boris Li
June 20, 2020

| am continuously making clarifications and additions to these notes as | trudge through the boredom
known as first-year calculus. Many definitions are revised to be more mathematically specific, and
instead of making a new document, | will be continuing here, since most of the material covered will be
identical.

Other than that, | will also be posting additional information that might not be useful for the exam,
might not be taught in first-year, but are rather extra pieces of information that | learnt over this year.
They will probably be taught at some stage in university, but | just found it interesting enough to put it
here, may it be a formal proof, another visualization of the same concept, or an extended concept that
pertains to the calculus we learn here.

Before we get in, | would like to extend a token of gratitude to my Science One TA Rio Weil, and my
fellow Science One classmates Morgan Arnold and Jocelyn Baker, for your great contributions to my
relatively empty head.

Boris Li
September 23, 2020



Behaviour of Functions
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The booklet introduces us to calculus with the following statement as written by CollegeBoard:

Big Idea 1: The idea of limits is essential for discovering and developing important ideas,
definitions, formulae, and theorems in calculus.

Calculus is the study of change. To understand how things change, first you must study how they
behave.



1 Characteristics of Functions
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The booklet omits the entirety of Chapter 1, but asks us to review our knowledge of functions from Pre-
calculus 11 and 12. This is also reflected in the actual classes, as Mr Geddes had also skipped over it by

assuming our knowledge.



2 Limits

Saturday, June 20, 2020 18:32

2.1 Determining Limits Graphically

. . sin x
Consider lim,._,q —

If we graph the numerator and denominator separately, we would observe that the two
functions intersect at the origin, which would mean that the function would, by substitution,

. . 0
return an indeterminate form of >

As x approaches 0, sin x and x behave very similarly. Their slopes are almost identical as we get
. sin x
closer and closer to 0. Therefore, we can conclude that lim,._, -~ = 1.

Now, if we graph the entire function, it would appear to pass through (0,1), but in fact, a value

does not exist at x = 0. lim,,_,, X~ 1aswe plug the hole in the graph.

2.2 Exploring Limits
How to find a limit:

1. Substitute in the value; and if it does not work,
2. Factor, cancel, then substitute in the value.

A limit can only exist when both sides approach the same value; that is, when the left-hand limit
equals the right-hand limit.

A floor function is a great example when demonstrating one-handed limits. It returns the largest
integer to the left of the value.

lim [x] =n
x->n+
lim [x]=n—-1
xX-n—
lim|x] does not exist
xX—-n
n ez

| will provide an almost strict definition of a limit, even though it is not AP or first-year material:

Assuming f is a function over certain set of real values called D, c is a limit point (does not have

to be within the domain of f, but can be approximated by its surroundings), and L € R, we say:
limf(x) =1L

X—C

For every € > 0, there mustbea § > 0.

(If there is a Ay, there must be a Ax. That's the defintion of a function, remember?)

Underx € D,if0 < |x —c| < §,then0 < |f(x) — L| < e.

(The distance between x and ¢ can always be smaller than any arbitrary number §.
Similarly, that applies to f(x), L, and ¢.)

The limit L is a value that can satisfy all these conditions, no matter how small € and § gets.
(As £ and 8 get smaller, and x and c gets closer and closer, if only one value can get as
close to the trend of f(x), that is the limit.)

So, to put it all in one big mathematical statement:

)lci_r)réf(x) =L (Ve>0,36>0,Vx €D 0<|x—¢c|<d=2>0<|f(x)—L| <¢)



2.3 Asymptotes
A horizontal asymptote exists when the limit as x approaches either infinity equals a constant
value.

A vertical asymptote exists when the limit as x approaches a value from either side equals to
positive or negative infinity.

2.4 End Behaviour

To find an end behaviour model g(x) for f(x), the limit as x approaches that infinity of the
quotient of f(x) to g(x) must equal 1 (they must behave similarly at that end).

Find dominant terms for polynomial functions.

Use the squeeze theorem by listing known upper and lower bounds of functions, and altering
them.

If a function is between two other functions, and the two other functions share the same limit,
the middle function must also share the same limit at that point.

In the case of end behaviour models, regard only limits at either infinity.

2.5 Continuity

2.5.1 Continuity requirements
A function is continuous at a point when a limit exists at that point, and is equal to the value of
that point.
lim £(x) = f(a)
Then f(x) is continuous at a.
A function is continuous at an endpoint when a one-sided limit exists at that endpoint.

f) {x|lx < a,x €R} f(x) {x|x > a,x € R}
Jim f(x) = f(a) Jim f(x) = f(a)
Then f(x) is continuous at a. Then f(x) is continuous at a.

A function is said to be continuous over an interval when all the points within that interval are
continuous.

2.5.2 Types of discontinuities
A function has a removable/point discontinuity when the discontinuity can simply be plugged
and made continuous. A limit exists, but the value does not or exists at a different value.

A function has a jump discontinuity when the value of the function jumps from one value to the
other. Both one-sided limits exist, but they do not equal each other, and therefore a limit does
not exist.

A function has an infinite discontinuity when a vertical asymptote exists. One-sided limits at
that point equal to positive or negative infinity.

A discontinuity is said to be oscillating when the exact value of discontinuity cannot be
, o1
determined. An example is sin—atx = 0.

2.5.3 Extended functions
When asked to find an extended function, write a function that plugs the continuity and make
the resulting function continuous by writing a piecewise function.



2.6 Theorems
The intermediate value theorem (IVT) states that if a function f(x) is continuous over a closed
interval [a,b], then every value between f(a) and f(b) must exist within that interval.

The extreme value theorem (EVT) states that if a function f(x) is continuous over a closed
interval [a,b], then f(x) must have both a maximum and minimum within that interval.



Differential Calculus
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As taught usually in the first term in university, differentiation is the art of finding slopes and rates of
change.

Table of Common Derivatives
Basic Properties
Constant multiple

d d
k) =k-—f(x)

Constant rule

dk—O
dx =

Binary Operations
Sum rule

d d d
a‘((x) +g(0)F af(x) + Eg(x)

Difference rule

d d d
W= 90F - f () - -9 @

Product rule

d

—fGg() = /(g0 + g (F )
~ () =uv+vu

~ d(uv) = udv + vdu

Quotient rule
4 fe) _ffx)gx) —g'()f(x)
dx g(x) g% (x)

' (11): u'v—v'u
“\v v2

u\ vdu — udv
(G

v v2

Common Rules

Chain rule

dy dy ds
dx  ds dx
Power rule
n—-1

—x™ =nx

dx

Trigonometry



Trigonometric functions

d
—sinx = cosx
dx
d .
—cosx = —sinx
dx
d 2
—tanx = sec” x
dx
d 2
—cotx = —cscéx
dx
d
—secx = tanxsecx
dx
d
—cscx = —cotxcscx
dx
Inverse trigonometric functions
d ., 1
—sinTtx = ——
dx 1—x?
d 1 1
—Cos X = ———
dx V1= x2
d tan-1 1
—tan ' x =
dx 1+ x?
t71 !

—cotT i x=———
dx 14 x2
d 1 1
—seclx=———
dx |x|Vx? —1

Ly 1
—csCT X = ————
dx |x|Vx? =1

Exponents and Logarithms
Exponential functions

iex = X
dx
ibx =b*Inb
dx
Logarithmic functions
d Iny = 1
dx nx= X
1
—logp x =

dx xInb



3 Derivatives
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3.1 Slope

. A
The average rate of change over an interval is 4

E.
On a graph, when connecting two points of a curve, a secant line is created, and the slope is determined

f)-f(a)

b—a

bym =

3.2 Slope at a Point

. . . d
The instantaneous rate of change over an interval is d—z.

The slope at point (a,f(a)) is calculated by m = lim,,_,, w Determining this rate of change is

called differentiation.

A line with slope m that passes through (a,f(a)) is called a tangent line.

3.3 Definition of the Derivative
fla+h) —f(a)
h

fGx+h)—f(x)
h

f'(a@) = lim

f'G) = lim

3.4 Alternate Definition of the Derivative
vy S = f(@)
f'(a) = lim —————=

xX—a X—a

3.5 Differentiability

To find one-sided derivatives, take any of the three formulae from above and substitute in one-sided
limits.

A function is only differentiable at a point when both one-sided derivates equal each other, and a limit
exists at that point.

Four ways that make a function fail to be differentiable:
1. Corners (y = |x| at 0);
2

. Cusps (y = x3 at 0);
1

2
3. Vertical tangents (y = x3 at 0); and
4 I 4t 0).

- Jump discontinuities (y = —=

Differentiability implies continuity; however, continuity does not ensure differentiability.

3.6 Symmetric Difference Quotient
Instead of closing in to a point from one side, closing in to a point from both sides.



oy g flath)—fla=h)
F@ ==

Calculators use this.

3.7 Graphing Derivatives

The degree is reduced by one.

Think slope fields.



4 Differentiation Techniques
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A quick summary:

Definition of the Derivative
x+h)—f(x
0 = i LGN =@

h—-0 h

Derivative at a point

(@) = iy @D S @
@) = tim DT @

x—-a X—a

Right-hand derivative
fla+h)—f(a)
h

f1@ = lip,

Left-hand derivative

f'@ = Jim

fla+h) —f(a)
h

Difference quotient
fla+h)—f(a)
h

Symmetric difference quotient
fla+h)—f(a—h)
2h

4.1 Polynomial Derivatives
4.1.1 Reciprocal Rule

a1 _f(x1+h)_f(1X)

dx f(x) h

d 1 fx)—-f(x+h)

dxf()  hffx+h)

L R S
dx f(x) fOf(x+h)
d 1 —f'k)

def(x) ~ f2(x)

4.1.2 Power Rule

Definition of the derivative

n>0nezZ
n (x+h)*—x"
ax* TS K

Binomial theorem



n n! n—kpk n—-13, _ N
_xn:“mzkﬂ(ﬁ(n—m. b+ ()
dx h—0 h

Factor out an h
n

d n! n!
A — i n-kpk-1 n-1
ax’ T - (k!(n—k)!)x h +<(n—1)!>x

k
ixn =nx™ 1

dx

n<0nez
n=-mm>0nezZ
d d 1

_xn —_— ——

dx dx x™m

d —mx™m-1
_xn -_——_—

Célx me
e — . —1-m
dxx nx

ix" =nx"1

dx

4.1.3 Sum rule

d d d
a‘((x) +g(0)F af(x) + ag(x)

4.1.4 Difference rule
d d d
ﬂf((x) — g(0)F @f(x) - Eg(x)

4.1.5 Constant multiple
d d
Ek'f(x) =k'af(x)

4.1.6 Constant rule

dk—O
dx =~

4.1.7 Finding Tangent Lines

The slope equals the derivative.
y=mx—x1)+y
The point it must pass through is (x4, y1)-

4.1.8 Finding Normal Lines

Same formula, but the slope is the negative reciprocal of the derivative.

4.2 Higher Order Derivatives
4.2.1 Product Rule



F(x) = f(x)g(x)

d o f+h) g+ h) - f)g(x)

&)= 7

fle+h) - gle+h) +{f(x)- g(x +h)+ f(0) - gl + h)Y F(x)g(x)

d .
&=

Fl=h) = fO) +== (gl —h) — g(x))
d —h) — _m—
e =i (‘%’3@( e CORC

d

L P =g +g'(Df ()
~S(uw) =u'v+vu

s~ d(uv) = udv + vdu

d . g( h) f()
2 [ ®) = |im )

4.2.2 Quotient Rule
fQ)
e
fx+h) f(x)
glx+h) g(x)
h

f(x+h)'g(x)'g(x+h)—%'g(@'g(x+h)

glx+h)
h-g(x)-g(x+h)
@y — iy L F I = F GG+ 1)
dx h—0 h-g(x)-glx+h)
fx+R)gl) + (fg) + f(x)g(x) — f(x)g(x + h)
h-g(x)-g(x+h)
fx+h)—fx) gk g) —glx+h)  f(x) >
h g(x)g(x +h) h g(x)g(x +h)
f'0)g(x) N —9' () f (%)
g*(x) g*(x)
fr)g(x) —g'()f (x)
g% (x)

d .
ax [ ) = Jim

d .
ax [ ) = Jim

d .
ax [ ) = Jim

d .
ax [ ) = Jim

2 peo =

—F()

(u): u'v—v'u
v v2

u\ vdu — udv
$4%————

v v2

Or

d

P =& )ﬁ _‘Z(S“))ﬂx)

ffglx) g'()f )

gx) g g*(x)

f0g() —g'()f (x)
g*(x)

dF _
5(?6)—

—F()

4.3 Rates of Change

Now for some actual application.



As
v=—

At

_ ds

V=
v =s'(t)

Notice s is a function for displacement. To calculate total distance travelled, take the absolute value of
each segment where velocity switches signs.

_ Av
Y:
_ dv

T

a=v'(t) =s"(t)
4.4 Trigonometric Derivatives
4.4.1 Sine
a y sin(x + h) — sinx
dx o T R h
d . . sinxcosh + cosxsinh —sinx
—sinx = lim
dx h—0 h
wcos0=1
d . . sinx + cosxsinh —sinx
—sinx = lim
dx h—0 h
d . . sinh
—sinx = cosx - lim
dx h—0
a
7o Sinx = cosx
4.4.2 Cosine

_ .. cos(x+h)—cosx

T cosx = lim A
d . cosxcosh—sinxsinh — cosx
—cosx = lim
dx h—0 h
wcos0=1
d ~ cosx —sinxsinh — cosx
—cosx = lim
dx h—0 h
d L y sinh
e cosx = —sinx - lim .
d L
7 C0SX = —sinx
4.4.3 Tangent
d . _ d sinx
dx anx = dx cos x
d (sinx)' cosx — (cosx)'sinx
—tanx =
dx cos? x
d cos? x + sin? x
—tanx = ————

dx cos? x



d 1
—tanx =

dx cos? x
d
— a2
tanx = sec® x
dx

4.4.4 Cotangent

d . d cosx
—cotx = —

dx dx sinx

d (cosx)'sinx — (sinx)’ cosx
—cotx = :

dx sin2 x
d . —sin? x — cos? x
—cotx = -

dx sin? x

d . 1

—cotx = ——

dx sin? x

d 2

—cotx = —csc? x

dx

4.4.5 Secant

d d 1

—secx = —

dx dx cosx

d —(cosx)’
—secx = ————

dx cos? x

d sinx

—secx =

dx cos? x

d

—secx = tanx secx

dx

4.4.6 Cosecant

d _d 1

dx esex = dx sin x

d _ —(sinx)’
dxcscx— sin? x

d _ cosx

cfix esex = sin? x
—CSCX = — cotx cscx
dx

4.5 Chain Rule

4.5.1 Leibniz notation
Let f and g be differentiable everywhere.

dy I Ay

dx Ax S0 Ax

dy I Ay Au

dx  AxS0Au Ax

dy . Ay . Au

dx Al)lcr_r}o Au Aalcr—rgoﬂ
From step 2, as Ax approach 0, Au approach 0.

dy y Ay y Au
dx  Mus0Au Axs0Ax
dy dy du
dx du dx

4.5.2 Lagrange notation



d . CEINLY:(€))
2 B Jim n

L NN L
= oy ym LD HD)oxt )90
%@((x)% nm ﬁ(,(cx:h})l)i ﬁ(g) g'(x)
letk =g(x+h)—g(x),ash— 0,k - 0.
 co lim B Z)} L

k-0

L He 1o @)



5 Advanced Differentiation Techniques
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Disclaimer: | seem to have lost the booklet for this, and therefore | will be trying my best to remember
what was taught from memory.

5.1 Composite Functions
(f o () = /()

5.2 Implicit Differentiation
Differentiating the left side and the right side is allowed.

5.3 Inverse Derivatives

v 1
U = @)
(f~H'(a) is the slope of the inverse graph.
The poima(f‘l(a)i) on the inverse graph.
The point (f~1(a), a) therefore must be on the original graph, and the slope at that point, f'(f ~1(a))
must be the reciprocal of the slope of the inverse graph.

5.4 Exponential and Logarithmic Derivatives

5.4.1 Natural Exponent
iex = X

dx

By definition.

5.4.2 Natural Logarithm

y=Inx
e¥ =x
d dx
ey ==
dxd dx
y
y.22 =1
€ dx
dy 1
dx eY
dl _1
dxnx_x

5.4.3 General Exponents

y =b*
Iny=xInb

dl _d Inb
dx;y_dxxn
1 dy
—-—=1Inb

y dx "

d

—y—ylnb

dx



ibx =b*Inb
dx

5.4.4 General Logarithms

y = logy x
Inx

Y Zinb
dy 1

dx  xlnb
d 1

510&”‘ - xInb

5.5 Logarithmic Differentiation
When in doubt, try taking the natural logarithm of both sides. This should eliminate nested exponents.

5.6 Inverse Trigonometric Derivatives

A note on the notation: | am a proponent of using the prefix 'arc-' instead of the -1 exponent; however,
Microsoft provides me with no such easy tools. This will be fixed when | transfer my notes over to LaTeX.
sin~! x = arcsin x

sin™ x = (sinx)"

5.6.1 Arcsine
y =sin"!x
x =siny

By the definition of sine, a right-angle triangle can be constructed with an angle measuring vy, its

opposite side measuring x, and the hypotenuse measuring 1.

The adjacent side to the referenced angle, c, can be calculated using the Pythagorean theorem:
2 2

x“+cc=1

c=+1-—x?

dx dsiny
dx _d dx
Y
1=—
dx
dy 1
dx cosy

cosy

And by definition of cosine, being the ratio of adjacent to hypotenuse in terms of the referenced angle:

d . 1 1
5.6.2 Arccosine
y =cos lx

X = Ccosy
x’+ct=1

c=+1-—x?
Where c is the opposite, x is the adjacent, and the hypotenuse measures 1, all in reference to the angle
that measures y.



dx dcosy

dx  dx
1= dy .

= siny
dy 1
dx  siny
d 1 1
—Ccos X = ———
d V1= x2
5.6.3 Arctangent
y=tan lx
X =tany
x2+1=c?

c=+14+x?
Where x is the opposite, the adjacent measures 1, c is the hypotenuse, all in reference to the angle that
measures y.

dx dtany
dx_d dx
_Y 2
l—dxsec y

dy

== cos?y

2= ()
dx 1+ x?
d L _ 1
dxar1 x_1+x2

5.6.4 Arccotangent

y =cot™1x
x = coty
x2+1=c?

c=+1+x?
Where the opposite measures 1, x is the adjacent, c is the hypotenuse, all in reference to the angle that
measures y.

dx _dcoty
dx ddx

1= —d—zcsczy
dy = —sin?

dx Y

—cotlx=———
dx 1+ x?

5.6.5 Arcsecant
y =sec lx

X = secy



c2+1=x2

c=+x?-1

Where c is the opposite, the adjacent measures 1, x is the hypotenuse, all in reference to the angle that
measures y.

dx dsecy
dx  dx

dy
1 =—tanysecy

dx
dy cosy

dx tany

Secant is positive in quadrants 1 and 4, and negative in 2 and 3. When we take the inverse of this
function, information is lost.

If we enter in a positive value into arcsecant, the answer from quadrant 1 is returned; alternatively, if a
negative value is entered, the answer from quadrant 2 is returned.

Since tangent and secant are both positive in quadrant 1 and both negative in quadrant 2, the product
of the two must therefore always be positive given the domain of arcsecant.

dy |1 1

dx  |x Jx2—1

d 1 1
—sec X =————
dx |x|Vx? —1
5.6.6 Arccosecant
y=csclx

X =cscy

c?+1=x2

c=+x%2-1
Where the opposite measures 1, c is the adjacent, x is the hypotenuse, all in reference to the angle that
measures y.

dx dcscy

dx  dx

1= 4y t

=g cotyescy
ay | .
7~ Sinytany

Cosecant is positive in quadrants 1 and 2, and negative in quadrants 3 and 4.

Arccosecant returns the answer from quadrants 1 and 4.

Since sine and tangent are both positive in quadrant 1 and both negative in quadrant 4, the product
must be positive within the domain of arccosecant.

dy |1 1
dx  |x Vx2 -1

—1 1
—csc iy = ————
dx |x|Vx? =1

5.7 L'Hopital's Rule

When the limit equals %, take the derivative of both top and bottom.



lim f(x) = lim g(x) = 0
lim @ = lim f'x)
e g(x)  xe g (x)




Applications of Derivatives
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Now we know how to find derivatives, let us figure out when to find derivatives.



6 Analyzing Functions
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6.1 First Derivative Test
Critical points: f'(c) = 0 or undefined.

If f'(x) goes from positive to negative at ¢, f(c) is a local maximum.
If f'(x) goes from negative to positive at ¢, f(c) is a local minimum.

In a closed interval [a, b]:

If lim,_q4 f'(x) <0, then f(a) is a local maximum.
If limy_q4 f'(x) > 0, then f(a) is a local minimum.
If lim,_,,_ f'(x) > 0, then f(b) is a local maximum.
If lim,_,,_ f'(x) < 0, then f(b) is a local minimum.

6.2 Modelling and Optimization
These problems usually require a solution of a maximum or a minimum. Use the first derivative test to
find such maxima and minima.

6.3 Second Derivative Test
Concavity: Whether the function is curving upward or downwards; concave up ('smile') or concave down
('frown'). The concavity switches at a point of inflection.

If f'"(c) > 0, fis increasing, and f is concave up.

If f"(c) <0, f'is decreasing, and f is concave down.

If f"(c) = 0, f' has a critical point, and f may be a point of inflection.
If the two one-sided limits for f''(c) are both positive or both negative, f’ does not change
direction and f therefore does not change concavity, resulting in a lack of point of inflection.

6.4 Curve Sketching
Horizontal inflection point: /"’ changes signs, f''(c) = 0and f'(c) =0
Vertical inflection point: Vertical tangent, f(¢) exists, but f'(c) and f'(¢) do not.

6.5 Mean Value Theorem

6.5.1 Mean Value Theorem

If f is continuous [a, b] and differentiable (a, b), there must be a value ¢ € (a, b) that f'(c) =
F)-f@

b-a
There must be a point on the graph that has the same slope as the average slope.

6.5.2 Rolle's Theorem
Given the conditions of the MVT, and f(a) = f(b), there must be a value ¢ € (a, b) that f'(c) = 0.



7 Solving Problems
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7.1 Related Rates: Area & Volume
7.1.1 Circles

A =nr?
dA dr

E = Zﬂra

7.1.2 Cylinders

V =mrih
av _ dh
dac " dr

(constant radius, draining straight down)

7.1.2 Spheres

V_4

—§T[T'
dV_4 2alr
ac e

3

7.1.3 Cones

V—1 2h
—37'[7'

av_1 ( dr ,dh
at 3\ e T 4

(simplify r & h down to one variable)

7.2 Related Rates: Motion
7.2.1 Right Triangle

a’?+b?=c?
da db dc

ZaE-FZbE:ZCa
da+bdb_ dc
Cac TP T Car

7.3 Related Rates: Periodic
7.3.1 Position versus Angle

y =rsinf
dy p deo
g~ reosf—

7.3.2 Chords & Clocks

Assuming a & b, the two 'radii', are constants
c?>=a® +b%+2abcosh

2 ‘- 2b'0d9
¢o; = ~2absiné—



dc  ab 9d0
ac . ¢ oW

7.4 Linearization & Differentials
7.4.1 Differential
dy = f'(x)dx

7.4.2 Linearization
L(a + Ax) = f(a) + f'(a)(Ax)



Integral Calculus
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Integrals, antiderivatives, and how to define them. As the name suggests, the antiderivative is to reverse
the process of differentiation, finding the original function given the derivative.

The integral is same, but also different. The integral exists to find the area under a curve, and although is
similar to the antiderivative in evaluation and calculation, is fundamentally different in concept.

The fundamental theorem of calculus ties this all together, linking the idea of a derivative to its
respective antiderivative, differentiation and its relationship to integration, and allows us to solve
differential equations.

Table of Common Antiderivatives

Basic Properties
Constant multiple

fkf(x)dx = kff(x)dx+ C

Constant rule

f:c

fdx:x+C

Binary Operations
Sum rule

ﬁf((x) + g(x)l)c = ff(x)dx + f gx)dx +C
Difference rule

ﬁ‘((x) - g(x)i)c = ff(x)dx — f gx)dx+C

Common Rules
Integration by Substitution

fw- -u'()dx = | f(w)- d—udx = | f(wdu
dx

Reverse Power rule

xn+1
fx"dx= +C
n+1

Reciprocal rule
dx

f— =In|x|+C
X

Trigonometry



Trigonometric functions

fsinxdx =—cosx+C

fcosxdx =sinx+C

These two are simple u/du substitutions.
ftanxdx = In|secx| + C = —In|cosx| + C

fcotx dx =In|sinx| + C = —In|cscx| + C

These two are nasty u/du substitutions.

fsecxdx = In|secx + tanx| + C

fcscxdx = —In|cscx + cotx| + C

Trigonometric derivatives

fseczxdxztanx+C
fcsczxdx=—cotx+C
ftanxsecxdx:secx+C

fcotxcscxdx =—cscx+C

Inverse trigonometric functions
These require integration by parts, and will be proven in Appendix 2 of AP Calculus BC.

fsin_lxdx=xsin_1x+ 1—-x2+C
fcos_lxdxzxcos_lx— 1-x2+4+C

1
ftan‘1 xdx =xtan lx — Eln(l +x3)+C

1
J‘cot‘1 xdx =xcot™lx+ Eln(l +x3)+C
fsec_lxdx:xsec_lx—ln(lxl+\/x2—1 C
fcsc_lxdxzxcsc_lx—ln(lxl—\/xz—1 C

Inverse trigonometric derivatives

X X
=sin""=+C; =—cos" =+ (,
a a

f dx
Vaz — x2



Exponents and Logarithms
Exponential functions

fexdx =e*+C
1
feaxdx = Ee“" +C

ax
faxdx=—+C
Ina

Logarithmic functions
These require integration by parts, and will be proven in Appendix 2 of AP Calculus BC.

flnxdx=xlnx—x+C

flnxdx:xlnax—x+C

x
flogbxdx—xlogbx—m+C



8 Antidifferentiation
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8.1 Antiderivative

8.1.1 Reverse Power Rule
The power rule states that:

fx) =xm
f1(0) = nx"!
Then by reversing the process:
fx) =x"
n+1

f6) = n+1 +C

xn+1
fx"dx = +C

n+1

8.1.2 Notation

Derivative notation

dy ,

=

Differential notation (multiply both sides by dx)
dy = f'(x)dx

Integral notation (integrate both sides)

y= ff’(x)dx

8.2 Trigonometric Antiderivative Results
d

—sinx = cosx
dx

fcosxdx =sinx+C

d :
—COSX = —SInx

dx
fsinxdx =—cosx+C

d 2
—tanx = sec“ x

dx

fseczxdx =tanx + C
d 2
—cotx = —csc?x

dx
fcsczxdx =—cotx+C



d
—secx = tanx secx
dx

ftanxsecxdx =secx+C

d
—cscx = —cotxcscx
dx

fcotxcscxdx =—cscx+C

8.3 Antidifferentiation via Substitution
[ reo G- ax= | rooa

8.4 Advanced Antidifferentiation Techniques

Sometimes the method above is unavoidable, since x cannot be completely cancelled out when du
replaces dx, and the remaining x's have to be substituted as u's.

8.5 Exponential and Logarithmic Antiderivative Results
8.5.1 Reciprocals

dl = >0
‘fix nx =_,x

1
—In(—x)=—,x <0
dx X

dx Inx+C, x>0
f— = <{does notexistx =0
x In(—x)+C,x <0

dx
f—:lnlxl +C
X

8.5.2 Exponents
d

—eX = ¥

dx
fexdx:ex+C

8.6 Inverse Trigonometric Antiderivative Results

d _,x 1

—sinTt— = ——

dx a az—xz

d 1 X 1

—Ccos ' —= ———

dx a Va2 = x2

dx X X

————=sin""—+(C; =—cos " —+(,
va? — x? a a
d X a

—tan"l—= 5 >

dx a a‘+x

d 1 X a

—cot™ —=

dx a a? + x2



J

———— = —secC
xVx2—a2 a

d x a

—secl-—=

dx a |x|VxZ—=a?
-1X _

dx a |x|Vx2 — a2
dx 1 |x




9 Differential Equations
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9.1 Analytical Approach

A differential equation is one that involves differentials. To solve one:
1. Separate the variables, y & dy on one side, x and dx on the other; then
2. Integrate.

Remember your constants of integration!

9.2 Graphical Approach
Sketching slope fields. This is useful for visualizing the possible solutions for the differential equation.
With an initial value, a particular solution can be extracted from the graph.

9.3 Riemann Sums

A definite integral has limits of integration. It evaluates the area under the curve, bounded by the lower
and upper limit. Riemann sums cuts the curve into pieces, and then uses geometric shapes to
approximate the area.

. b— . .
In the following methods, Ax = Ta, where n is a natural number of segments cut into.

9.3.1 Left Rectangular Approximation Method (LRAM)

Taking the left value of each segment.

b n
f)dx = f(xg-1)Ax, x;, = a + mAx
ff(x)dxzA)l((a)+f(a+Ax)+f(a+2Ax)+---+f(b—2Ax)+f(b—Ax))

9.3.2 Right Rectangular Approximation Method (RRAM)

Taking the right value of each segment.
n

b
f f)dx = Zf(xk)Ax,xm = a + mAx

k=1

b
f FGOdx ~ A+ Ax) + f(a+ 28) + f(a + 38x) + -+ f(b — Ax) + (b))

9.3.3 Midpoint Rectangular Approximation Method (MRAM)

Taking the middle value of each segment.
n

b Xk — Xk-1
ff(x)dszf( > X, X, = a4+ mAx
a

k=1

fbf(x)dx

1 3 5 3 1
zAx<f<a+§Ax)+f<a+EAx>+f<a+EAx>+---+f<b—EAx>+f<b—§Ax>>

9.3.4 Trapezoidal Approximation

Taking both endpoints, draw a line, area under that line.



[ reoax ~ S0~ F e fE o = 0t e
a k=1

b
f FOo)dx ~ %((a) 1 2f(a+Ax) + 2f(a + 20%) + -+ 2f (b — Ax) + £ (b))

9.4 Graphically Calculating Area

Simply use geometric shapes. And your brain.



10 Fundamental Theorem of Calculus
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10.1 Integrals
10.1.1 Definite Integral

A definite integral is when we cut a curve into infinitely many slices over an interval, and add them
together.

Let f be a continuous function over [a, b].

. - L b-
The curve is subdivided into intervals of length Ax = Ta
Asn — oo, Ax = 0.

i S reom = [ e
i=1 a

10.1.2 Fundamental Theorem of Calculus
Let f(x) be a continuous function over [a, b], and F'(x) = f(x).

b
[ redx = e, =F ) - F@

10.1.3 Connections
b c [

d dx = d
fa o+ fb ) f fGOdx
ff(x)dx=0
ab a
ff(x)dx=—f f(x)dx
a b

10.2 Derivative of Definite Integrals
10.2.1 First Fundamental Theorem of Calculus

b
[ reodx =@ =) - r@
10.2.2 Second Fundamental Theorem of Calculus
d X
[ rwae=sw

If gC0) = [ f(©)dt then g'(x) = f (x).
10.2.3 Extension to Second Fundamental Theorem

The 2nd FTC also applies to functions.
u(x)

d du dv
), [Od =TT

10.3 Average Value of a Function
10.3.1 Average Value

b
f© =3[ f@x



10.3.2 Mean Value Theorem

If f is continuous over [a, b], then there exists a ¢ such that:

b
[ rdx =@ -

There must be a value that is equal to the average value.
Then the average value of the first derivative can also be shown as:

oy ) = f(a)
f'() I

1
f'(c) = m‘f((b) - f()
b
F©) = [ rax

10.4 Integral as Net Change

Just as before, since v(t) = x'(t),

fx’(t)dt = f v(t)dt =x(t)+C

b b
f v(t)dt = x(t)l = x(b) — x(a)
Then, :
b
x(b) = x(a) = f v(t)dt



Applications of Integration
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I mean, if we have applications of derivatives, we kind of need applications of integration?



11 Area and Volume
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11.1 Area Between Two Curves

b
A= - gl

11.2 Horizontal Slices
b
4= f 1) — g7 Oy

11.3 Volumes
11.3.1 Revolutions around x-axis

b
V= Tl'f f2(x)dx

11.3.2 Revolutions around y-axis

d
v=r| oy

11.4 Washer Method
b
V=nffe(x) — g2

11.5 Cross-Sectional Area

V= fbA(x)dx



Conclusion
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AP Calculus as taught in high school covers most of the main concepts, such as a general idea of how
derivatives and antiderivatives work. However, it is taught in such a way that it requires intuition and
favours simplicity over rigourous proofs. | have attempted to condense most of the concepts into a
single line of mathematical statements, and have sometimes provided my thought process and logic
through intermediate steps, but this is not enough.

Looking forward, as | enter into university, | will once again relearn all the concepts, albeit in a different
manner, this time formally using all the strict methods of manipulation and analysis. | hope this
document can serve as an intermediate, a comfortable medium between the familiarity of words and
the elegance of mathematics.

Boris Li
July 7, 2020



